x+9x/x-8=72/x-8

Simple and best practice solution for x+9x/x-8=72/x-8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+9x/x-8=72/x-8 equation:



x+9x/x-8=72/x-8
We move all terms to the left:
x+9x/x-8-(72/x-8)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: x-8)!=0
x∈R
We get rid of parentheses
x+9x/x-72/x+8-8=0
We multiply all the terms by the denominator
x*x+9x+8*x-8*x-72=0
We add all the numbers together, and all the variables
9x+x*x-72=0
Wy multiply elements
x^2+9x-72=0
a = 1; b = 9; c = -72;
Δ = b2-4ac
Δ = 92-4·1·(-72)
Δ = 369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{369}=\sqrt{9*41}=\sqrt{9}*\sqrt{41}=3\sqrt{41}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-3\sqrt{41}}{2*1}=\frac{-9-3\sqrt{41}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+3\sqrt{41}}{2*1}=\frac{-9+3\sqrt{41}}{2} $

See similar equations:

| 8x-4=-156 | | 2.8/x=0.0153 | | 8.11(n-10)=64 | | 4x-22=x+3 | | -x+50=155 | | 12/m=7/3 | | 2x2+14x=5x+35 | | 6t^2-36t+54=0 | | 13=-4t-32 | | -7+5v=-37 | | 4(2z−8)=16 | | 300+.7x=40+.9x | | 5x^2+25=128 | | -24+6s=-48- | | 6(x-9)=6x-54+1x | | 1/3x+4=1/2 | | 2(4x+12)+2(2x-10)=0 | | 69=5x-16 | | x2+4x+4=2x2=3x-2 | | 5x+1.5=2x+.6 | | (360+80x)/(120+x)=50 | | 2x^4=(2x+5) | | 3(4+s)=3(3s-1)-15 | | 4d-40=d+5 | | 118-w=241 | | -9x=54=72 | | 0.8(m-5)=5 | | 2x+1.2=x+2 | | (v+5)(-1.9)=6 | | x+3/12=2/6 | | 4d-10=d+5 | | 8w+6=70 |

Equations solver categories