If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+6(x-1)=7x(3+x)
We move all terms to the left:
x+6(x-1)-(7x(3+x))=0
We add all the numbers together, and all the variables
x+6(x-1)-(7x(x+3))=0
We multiply parentheses
x+6x-(7x(x+3))-6=0
We calculate terms in parentheses: -(7x(x+3)), so:We add all the numbers together, and all the variables
7x(x+3)
We multiply parentheses
7x^2+21x
Back to the equation:
-(7x^2+21x)
7x-(7x^2+21x)-6=0
We get rid of parentheses
-7x^2+7x-21x-6=0
We add all the numbers together, and all the variables
-7x^2-14x-6=0
a = -7; b = -14; c = -6;
Δ = b2-4ac
Δ = -142-4·(-7)·(-6)
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{7}}{2*-7}=\frac{14-2\sqrt{7}}{-14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{7}}{2*-7}=\frac{14+2\sqrt{7}}{-14} $
| 61/8-w=53/8 | | 2=1+7t-5t^2 | | 2(s+2)^2-9(s+2)=5 | | 8-3k=6k+2 | | 2(2x+4)=-2(2x+4) | | 4m+14m–-11=-7 | | m+13/5=5 | | 9y+2+2y+5=16y-23 | | 13-3(5x-1=) | | 3(2x+1=3(x+5) | | 3/4(3x+1)=12 | | 5x+6x-4x-5=44 | | 20/30=5x | | 6(5x+7)=402 | | 3(2x-1)+5=6(x+1 | | 3f+1=9 | | 8+4p-1-7p=1-p | | 2(x+8)=4(x+5) | | (1.15)^x=3 | | 7z-(4-2z)=3(z+3)-1 | | 2r+8=11 | | 1t=3 | | 4y+16=3.3-1.3 | | 4x-52+8x-10=90 | | 7x-12=9x+10 | | 3r^2-10r3=0 | | 2.5x+55.4=27.8-11.3x | | (X+3)^2+9(x+3)+20=0 | | 10x-50+6=6x+10-6 | | 3r^2+6r=0 | | 4y+16=0.3333(10y-4 | | 18y-5y=6y-27 |