x+3(x+3)=x(7+x)

Simple and best practice solution for x+3(x+3)=x(7+x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+3(x+3)=x(7+x) equation:



x+3(x+3)=x(7+x)
We move all terms to the left:
x+3(x+3)-(x(7+x))=0
We add all the numbers together, and all the variables
x+3(x+3)-(x(x+7))=0
We multiply parentheses
x+3x-(x(x+7))+9=0
We calculate terms in parentheses: -(x(x+7)), so:
x(x+7)
We multiply parentheses
x^2+7x
Back to the equation:
-(x^2+7x)
We add all the numbers together, and all the variables
4x-(x^2+7x)+9=0
We get rid of parentheses
-x^2+4x-7x+9=0
We add all the numbers together, and all the variables
-1x^2-3x+9=0
a = -1; b = -3; c = +9;
Δ = b2-4ac
Δ = -32-4·(-1)·9
Δ = 45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3\sqrt{5}}{2*-1}=\frac{3-3\sqrt{5}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3\sqrt{5}}{2*-1}=\frac{3+3\sqrt{5}}{-2} $

See similar equations:

| 6=-5.8+n | | 3/4n+1/6n=1 | | 2.4v=-14.4 | | -46.4=5.8y | | y-6.162=7.55 | | t=35-11 | | b+5.52=13.5 | | -4.7=x/2 | | a-1/2=3/4 | | 9+4n=1n=3 | | 12+x=x+2+8 | | t=46-4 | | x+x+5=1+x+3 | | x=5+14 | | 3x+6=-6x-1 | | 29y-16y=78 | | ​r+19=3 | | 6x–12=–4x | | 32x=x*x*x*x*x*x*x*x | | 5x=2x+65x-2x=6x= | | m4−2=−4 | | (x+2)²-(x+4)(x-4)=2(x+5) | | 2x+5+12=2x+2+14 | | x-2+9=12 | | 3s=-33 | | -3-x-3x=10 | | -12=3+a | | 2+x+4=x-1+5 | | 2+x=x-1 | | 6=4t-7t-10 | | 7x-8-5x=38 | | 36=-7t+1 |

Equations solver categories