x+20=1/2x+108

Simple and best practice solution for x+20=1/2x+108 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+20=1/2x+108 equation:



x+20=1/2x+108
We move all terms to the left:
x+20-(1/2x+108)=0
Domain of the equation: 2x+108)!=0
x∈R
We get rid of parentheses
x-1/2x-108+20=0
We multiply all the terms by the denominator
x*2x-108*2x+20*2x-1=0
Wy multiply elements
2x^2-216x+40x-1=0
We add all the numbers together, and all the variables
2x^2-176x-1=0
a = 2; b = -176; c = -1;
Δ = b2-4ac
Δ = -1762-4·2·(-1)
Δ = 30984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{30984}=\sqrt{4*7746}=\sqrt{4}*\sqrt{7746}=2\sqrt{7746}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-176)-2\sqrt{7746}}{2*2}=\frac{176-2\sqrt{7746}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-176)+2\sqrt{7746}}{2*2}=\frac{176+2\sqrt{7746}}{4} $

See similar equations:

| 2(t+5)-1=-1 | | Y=x-320 | | -7+3w=19 | | 5x+38=x | | 3(z+7)(-z+8)=0 | | 4x+(16*25)=1110 | | 4x+(16*30)=1110 | | 4x+(16*30)=1115 | | (4*170)+16k=1115 | | 4x+(16*20)=1115 | | q-6/2=2 | | x+x=3x+32 | | 6x+78-3.6=x/x | | 24+2y=y-6 | | 2/6+67-x=2 | | 2m+7=9m-7 | | 15(x-1)=-30 | | -(-5x-5)=-(-9+1)+6x | | (x+36)/7=3 | | -(-5x-5)-1=-(-9x+10+6x | | 26x=-38 | | 4x(2x+7)=6+18 | | 6/x=10/4 | | 4.2+10m=7.76 | | 9x-3-4x+1=0 | | (a+9)(a+1)=0 | | -27=-6(7d+3) | | 4a+2a+5=23 | | 6(-5/3x+1/3)+8x=-2(9x-2)+10x | | 6(y+4)=6y10 | | 2x+4=4x-10+8 | | 6(y=4)=^y=10 |

Equations solver categories