x+10=3(x-1)(x-1)

Simple and best practice solution for x+10=3(x-1)(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+10=3(x-1)(x-1) equation:


Simplifying
x + 10 = 3(x + -1)(x + -1)

Reorder the terms:
10 + x = 3(x + -1)(x + -1)

Reorder the terms:
10 + x = 3(-1 + x)(x + -1)

Reorder the terms:
10 + x = 3(-1 + x)(-1 + x)

Multiply (-1 + x) * (-1 + x)
10 + x = 3(-1(-1 + x) + x(-1 + x))
10 + x = 3((-1 * -1 + x * -1) + x(-1 + x))
10 + x = 3((1 + -1x) + x(-1 + x))
10 + x = 3(1 + -1x + (-1 * x + x * x))
10 + x = 3(1 + -1x + (-1x + x2))

Combine like terms: -1x + -1x = -2x
10 + x = 3(1 + -2x + x2)
10 + x = (1 * 3 + -2x * 3 + x2 * 3)
10 + x = (3 + -6x + 3x2)

Solving
10 + x = 3 + -6x + 3x2

Solving for variable 'x'.

Reorder the terms:
10 + -3 + x + 6x + -3x2 = 3 + -6x + 3x2 + -3 + 6x + -3x2

Combine like terms: 10 + -3 = 7
7 + x + 6x + -3x2 = 3 + -6x + 3x2 + -3 + 6x + -3x2

Combine like terms: x + 6x = 7x
7 + 7x + -3x2 = 3 + -6x + 3x2 + -3 + 6x + -3x2

Reorder the terms:
7 + 7x + -3x2 = 3 + -3 + -6x + 6x + 3x2 + -3x2

Combine like terms: 3 + -3 = 0
7 + 7x + -3x2 = 0 + -6x + 6x + 3x2 + -3x2
7 + 7x + -3x2 = -6x + 6x + 3x2 + -3x2

Combine like terms: -6x + 6x = 0
7 + 7x + -3x2 = 0 + 3x2 + -3x2
7 + 7x + -3x2 = 3x2 + -3x2

Combine like terms: 3x2 + -3x2 = 0
7 + 7x + -3x2 = 0

Begin completing the square.  Divide all terms by
-3 the coefficient of the squared term: 

Divide each side by '-3'.
-2.333333333 + -2.333333333x + x2 = 0

Move the constant term to the right:

Add '2.333333333' to each side of the equation.
-2.333333333 + -2.333333333x + 2.333333333 + x2 = 0 + 2.333333333

Reorder the terms:
-2.333333333 + 2.333333333 + -2.333333333x + x2 = 0 + 2.333333333

Combine like terms: -2.333333333 + 2.333333333 = 0.000000000
0.000000000 + -2.333333333x + x2 = 0 + 2.333333333
-2.333333333x + x2 = 0 + 2.333333333

Combine like terms: 0 + 2.333333333 = 2.333333333
-2.333333333x + x2 = 2.333333333

The x term is -2.333333333x.  Take half its coefficient (-1.166666667).
Square it (1.361111112) and add it to both sides.

Add '1.361111112' to each side of the equation.
-2.333333333x + 1.361111112 + x2 = 2.333333333 + 1.361111112

Reorder the terms:
1.361111112 + -2.333333333x + x2 = 2.333333333 + 1.361111112

Combine like terms: 2.333333333 + 1.361111112 = 3.694444445
1.361111112 + -2.333333333x + x2 = 3.694444445

Factor a perfect square on the left side:
(x + -1.166666667)(x + -1.166666667) = 3.694444445

Calculate the square root of the right side: 1.922093766

Break this problem into two subproblems by setting 
(x + -1.166666667) equal to 1.922093766 and -1.922093766.

Subproblem 1

x + -1.166666667 = 1.922093766 Simplifying x + -1.166666667 = 1.922093766 Reorder the terms: -1.166666667 + x = 1.922093766 Solving -1.166666667 + x = 1.922093766 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.166666667' to each side of the equation. -1.166666667 + 1.166666667 + x = 1.922093766 + 1.166666667 Combine like terms: -1.166666667 + 1.166666667 = 0.000000000 0.000000000 + x = 1.922093766 + 1.166666667 x = 1.922093766 + 1.166666667 Combine like terms: 1.922093766 + 1.166666667 = 3.088760433 x = 3.088760433 Simplifying x = 3.088760433

Subproblem 2

x + -1.166666667 = -1.922093766 Simplifying x + -1.166666667 = -1.922093766 Reorder the terms: -1.166666667 + x = -1.922093766 Solving -1.166666667 + x = -1.922093766 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.166666667' to each side of the equation. -1.166666667 + 1.166666667 + x = -1.922093766 + 1.166666667 Combine like terms: -1.166666667 + 1.166666667 = 0.000000000 0.000000000 + x = -1.922093766 + 1.166666667 x = -1.922093766 + 1.166666667 Combine like terms: -1.922093766 + 1.166666667 = -0.755427099 x = -0.755427099 Simplifying x = -0.755427099

Solution

The solution to the problem is based on the solutions from the subproblems. x = {3.088760433, -0.755427099}

See similar equations:

| 22,500/240,000 | | 4t^4=64t^2 | | 4v^2=81 | | 22.5/24 | | 120+x=460 | | 22y+40=3 | | (2u-3)(4-u)=0 | | log(x)=8 | | http://mathematikoi.it/Strumenti-Di-Calcolo/risolvere-le-equazioni-online.html | | 1/7(-21x-3)= | | 1/7(-21x-3) | | -30x-4=-5x-2 | | 4x+16+23-5x=6-15+8x | | -30x-4=-5x-10 | | 7(3z-9)= | | 2x^3-x^2+18x-9=0 | | 30x-4=-5x-10 | | 3a^2-150=0 | | 2x-4+5x=2-1 | | 2x^2=80-3x^2 | | 4(5x+4)=-196 | | .2=(x-210)/x | | (0.008)2/3 | | x^2+13x=-4 | | (X^4+4x)=0 | | x^2+11x=4 | | -(n+5)=-8-3(n+5) | | 24x+62y= | | 4.6/10.2-2.8/x | | 9x^6-12x^5-21x^4=0 | | -5(n-2)-7n=5(3-2n)+3n | | r-7.7=-7.6 |

Equations solver categories