x+10=(x+12)(4x-6)

Simple and best practice solution for x+10=(x+12)(4x-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+10=(x+12)(4x-6) equation:



x+10=(x+12)(4x-6)
We move all terms to the left:
x+10-((x+12)(4x-6))=0
We multiply parentheses ..
-((+4x^2-6x+48x-72))+x+10=0
We calculate terms in parentheses: -((+4x^2-6x+48x-72)), so:
(+4x^2-6x+48x-72)
We get rid of parentheses
4x^2-6x+48x-72
We add all the numbers together, and all the variables
4x^2+42x-72
Back to the equation:
-(4x^2+42x-72)
We add all the numbers together, and all the variables
x-(4x^2+42x-72)+10=0
We get rid of parentheses
-4x^2+x-42x+72+10=0
We add all the numbers together, and all the variables
-4x^2-41x+82=0
a = -4; b = -41; c = +82;
Δ = b2-4ac
Δ = -412-4·(-4)·82
Δ = 2993
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-41)-\sqrt{2993}}{2*-4}=\frac{41-\sqrt{2993}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-41)+\sqrt{2993}}{2*-4}=\frac{41+\sqrt{2993}}{-8} $

See similar equations:

| -5/10x=-5/7 | | Xx9=48 | | 2-(1)/(2)n=3n+16 | | 5-14x=3(-x+9) | | -(2x-5)=4x+17 | | 14x-2=46+9x-8 | | 4(x-2)=3x+20 | | r/10=12 | | x+1+9=90 | | 12+16x-8=7x-14-9 | | 7x-2x+8=19+4x | | 3(2x-3)+2=8 | | 20-7x+5=13x-3+8 | | 11x+6=2+12x | | +45+(.25)x=x | | -2+2x-1+2x=3-3x+3-3x | | 2(3b-1)=-20 | | 12+4x-7=2x-5+5x-2 | | 5x-20-15=20-5x+15 | | 17x+30=13x+30 | | Gx6=1.2 | | X7=14x2 | | 2n+5+n=5+2n-7 | | 15+x=65.75 | | 11x=3x+56 | | -x=7x+48 | | 30w=420 | | 15/7=113/4a | | 27=3c+3 | | 5x-54=3x-15 | | 0=7x-4x-7x | | 4x–5=−3x–4 |

Equations solver categories