If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+(x-46)+1/2x+(x-35)=360
We move all terms to the left:
x+(x-46)+1/2x+(x-35)-(360)=0
Domain of the equation: 2x!=0We get rid of parentheses
x!=0/2
x!=0
x∈R
x+x+1/2x+x-46-35-360=0
We multiply all the terms by the denominator
x*2x+x*2x+x*2x-46*2x-35*2x-360*2x+1=0
Wy multiply elements
2x^2+2x^2+2x^2-92x-70x-720x+1=0
We add all the numbers together, and all the variables
6x^2-882x+1=0
a = 6; b = -882; c = +1;
Δ = b2-4ac
Δ = -8822-4·6·1
Δ = 777900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{777900}=\sqrt{100*7779}=\sqrt{100}*\sqrt{7779}=10\sqrt{7779}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-882)-10\sqrt{7779}}{2*6}=\frac{882-10\sqrt{7779}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-882)+10\sqrt{7779}}{2*6}=\frac{882+10\sqrt{7779}}{12} $
| p^2-8p=-4 | | -k-2k=-3 | | 7b+11/4=-6 | | (15z+3)=(5z+1) | | 7b+11/4=6 | | 9/2+2m/3=41/6 | | 4-x=-x+4 | | 9/2+2m=41/6 | | X+(2+4)-1=x-1+7 | | 5x-25=10x+10 | | -8(x+3)-6=2(-5-4x) | | 16r=160 | | x+6+4x-6+3x=0 | | 4x-2=4x-8 | | -5(1-7x)+6=33+3x | | w/60=700 | | 55=7(1+n)-(-2n-3) | | 34=-8(v-6)-7(2-8v) | | 170=-17m | | 5-(X+3)=-1+2(x+-3) | | 22h=248+14h | | 17.65=3g+3.94 | | ?x0.8=0.4 | | 7(4b-5)=5b+34 | | 8=8-5x-6x | | 8x+6-3(x+1)=9x+6 | | 5·3^(x-1)+3^(x+2)-3^x=1 | | -118=2(7x-3) | | 1/2a-9=4a+5 | | 2x=3x+1-x-7+6 | | 12x+10+4x+10=180 | | 8(5m-1)=-40+8m |