If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+(x-46)+1/2x)+(x-35)=360
We move all terms to the left:
x+(x-46)+1/2x)+(x-35)-(360)=0
Domain of the equation: 2x)+(x!=0We add all the numbers together, and all the variables
x∈R
x+(x-46)+1/2x)+(x=0
We get rid of parentheses
x+x+1/2x)+(x-46=0
We multiply all the terms by the denominator
x*2x)+(x+x*2x)+(x-46*2x)+(x+1=0
We add all the numbers together, and all the variables
x*2x)+(+x+x*2x)+(+x-46*2x)+(x+1=0
We add all the numbers together, and all the variables
2x+x*2x)+(+x*2x)+(-46*2x)+(x+1=0
Wy multiply elements
2x^2+2x^2+2x-92x+1=0
We add all the numbers together, and all the variables
4x^2-90x+1=0
a = 4; b = -90; c = +1;
Δ = b2-4ac
Δ = -902-4·4·1
Δ = 8084
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8084}=\sqrt{4*2021}=\sqrt{4}*\sqrt{2021}=2\sqrt{2021}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-2\sqrt{2021}}{2*4}=\frac{90-2\sqrt{2021}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+2\sqrt{2021}}{2*4}=\frac{90+2\sqrt{2021}}{8} $
| 2(a-6)=-(-a-7) | | 3(x+4)=2.4 | | -5n+4n-11=n+3 | | 4(x-28)=60 | | 6k2+12k-15=10 | | 15x+15=170 | | 6k2+12k-15=0 | | 6w+5=8+11 | | 3x-36=-21-6 | | -4=z/4-7 | | -4(-6u+6)-9u=3(u-3)-6 | | 4+6x-6x=4 | | 4(x-28)=144 | | 28.4+16.49=x | | 3(2x-1)+5x=8(2x-6) | | 3(2x−4)=−18 | | 3(x-7)=2x-24 | | 12-1/3n=15 | | 0=4-x/3 | | 8y+4y=72 | | (9x+15)=(-3x-15) | | 5m+19=4m+11 | | -9-3r=4-6r+5 | | X^2-(x-7)(x-7)-x=21 | | 16+4w=100 | | 7w=3=5w+9 | | 6(x+3)=4(x+4) | | 3x+x+60=2420 | | 2(3x+4)-17=2x-1 | | 9x2-27x=-0 | | -7b-3=8b-b+11 | | 2n2+5n-9=0 |