x+(x-45)+x(x-45)+(x-45)=540

Simple and best practice solution for x+(x-45)+x(x-45)+(x-45)=540 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(x-45)+x(x-45)+(x-45)=540 equation:



x+(x-45)+x(x-45)+(x-45)=540
We move all terms to the left:
x+(x-45)+x(x-45)+(x-45)-(540)=0
We multiply parentheses
x^2+x+(x-45)-45x+(x-45)-540=0
We get rid of parentheses
x^2+x+x-45x+x-45-45-540=0
We add all the numbers together, and all the variables
x^2-42x-630=0
a = 1; b = -42; c = -630;
Δ = b2-4ac
Δ = -422-4·1·(-630)
Δ = 4284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4284}=\sqrt{36*119}=\sqrt{36}*\sqrt{119}=6\sqrt{119}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-6\sqrt{119}}{2*1}=\frac{42-6\sqrt{119}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+6\sqrt{119}}{2*1}=\frac{42+6\sqrt{119}}{2} $

See similar equations:

| 720=-10(5x-12) | | -9+6(1-4a)=-27 | | -6(8x-22)=420 | | -7(-6x+20)=196 | | k/7+3=4 | | 4r-16=20 | | 608=-8(8x+20) | | 7n^2=-12 | | 180=x+90 | | -7(10x-16)=742 | | 25+10(12+x)=5(2x-7 | | 160-y=211 | | 5(7x-18)=180 | | 180=70(4+2x) | | 2/3p=9 | | 4(7v-6)=-18 | | -6(10x+20)=180 | | 2(x-1)+3x=32(x−1)+3x=3 | | (x-45)+(x-45)+(x-45)+x-x=540 | | -4(v+9)=8v+48 | | 1/2(6x-8)=2x+6 | | (-5x-10)/5-15=-2x+20 | | (5x+6)=16x-27 | | -10(6x-16)=-140 | | w/3+10=38 | | 24=-7u+2(u+2) | | (4x+9)=11x-61 | | X/x69=8/30 | | 2(5x-2)=9x-62 | | 3u^2+6=-7u | | (3x-4)/2+6=x-4 | | 518=-7(7x+17) |

Equations solver categories