x+(x-45)+(x-35)+1/2x=350

Simple and best practice solution for x+(x-45)+(x-35)+1/2x=350 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(x-45)+(x-35)+1/2x=350 equation:



x+(x-45)+(x-35)+1/2x=350
We move all terms to the left:
x+(x-45)+(x-35)+1/2x-(350)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We get rid of parentheses
x+x+x+1/2x-45-35-350=0
We multiply all the terms by the denominator
x*2x+x*2x+x*2x-45*2x-35*2x-350*2x+1=0
Wy multiply elements
2x^2+2x^2+2x^2-90x-70x-700x+1=0
We add all the numbers together, and all the variables
6x^2-860x+1=0
a = 6; b = -860; c = +1;
Δ = b2-4ac
Δ = -8602-4·6·1
Δ = 739576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{739576}=\sqrt{4*184894}=\sqrt{4}*\sqrt{184894}=2\sqrt{184894}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-860)-2\sqrt{184894}}{2*6}=\frac{860-2\sqrt{184894}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-860)+2\sqrt{184894}}{2*6}=\frac{860+2\sqrt{184894}}{12} $

See similar equations:

| 1/9=x/9 | | Q=60-5p | | 5x+5=4x–3 | | 5x+5=4x–3* | | 9+25a^2=0 | | 7x-3/8=4 | | (Y+4)(y-2)=16 | | 4(9+25a^2)=0 | | 4(g-)=-3= | | 1/4(x+1)=2x+2 | | X(x+11)=-10 | | X(x+11=-10 | | 2.6x+2.6=-9.4 | | 3t+7/2+3-7=2t+3/5 | | -3h=-2h−10 | | 9y=4+10y | | 6x-5=15x+45 | | 6x+7=(4x+8)÷5 | | 6x-5=15+45 | | B=55t2−44t | | 2x-3/3+1=3x+2/5 | | _x1000=500 | | 81i^2+144i+64=0 | | -5-3x/4=3x/3+22 | | 2(2x-3)=6x25 | | 12x+5=-1 | | 4x^2+40x=-64 | | 8.2x-5.2x=4.5 | | 50x-1=0 | | 6(y-1)-5(y+2)=-4 | | -2x+5=-3x-3 | | 5y(+2)=7(y+1)+1 |

Equations solver categories