x+(x+20)=3x(x-8)

Simple and best practice solution for x+(x+20)=3x(x-8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(x+20)=3x(x-8) equation:



x+(x+20)=3x(x-8)
We move all terms to the left:
x+(x+20)-(3x(x-8))=0
We get rid of parentheses
x+x-(3x(x-8))+20=0
We calculate terms in parentheses: -(3x(x-8)), so:
3x(x-8)
We multiply parentheses
3x^2-24x
Back to the equation:
-(3x^2-24x)
We add all the numbers together, and all the variables
2x-(3x^2-24x)+20=0
We get rid of parentheses
-3x^2+2x+24x+20=0
We add all the numbers together, and all the variables
-3x^2+26x+20=0
a = -3; b = 26; c = +20;
Δ = b2-4ac
Δ = 262-4·(-3)·20
Δ = 916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{916}=\sqrt{4*229}=\sqrt{4}*\sqrt{229}=2\sqrt{229}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-2\sqrt{229}}{2*-3}=\frac{-26-2\sqrt{229}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+2\sqrt{229}}{2*-3}=\frac{-26+2\sqrt{229}}{-6} $

See similar equations:

| 2x+20=-x | | -32*x^2-288*x+900=0 | | 1/x(50)=25x | | 5x+0.08=3x | | 10x+80=120 | | 8+x2=6 | | 4y(y-7)(y+5)=0 | | .6*x=40 | | a/6+8=5 | | r+2.1=4/7 | | r+2/1=4/7 | | x+(x/2)-7=17 | | 4(6x+1)=52 | | 3(-10+2x)=18 | | 4x+10=1/5x+88/5 | | 4-6x+3-32=0 | | 7x*1.5=-6x-3.7 | | 7(6+6x)=-462 | | 2(-1-6x)=-74 | | x−34=514−x+57. | | 2x^2+7x+12=-20 | | 4x−3=6x−7 | | 1/54x=1/9 | | 8y+28-y+13=-20 | | 7+(-4z)=-9 | | u-5.1=4.5 | | 3+2x(3x+6)=21 | | -5/4x-1/4=-3/2+5/8x | | 12x2-14x+4=0 | | 5p+2=-18 | | -x^2-7x-9=0 | | 3(n+4)-5(n-1)=9n-5 |

Equations solver categories