x+(x+1)(x+2)=42

Simple and best practice solution for x+(x+1)(x+2)=42 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(x+1)(x+2)=42 equation:



x+(x+1)(x+2)=42
We move all terms to the left:
x+(x+1)(x+2)-(42)=0
We multiply parentheses ..
(+x^2+2x+x+2)+x-42=0
We get rid of parentheses
x^2+2x+x+x+2-42=0
We add all the numbers together, and all the variables
x^2+4x-40=0
a = 1; b = 4; c = -40;
Δ = b2-4ac
Δ = 42-4·1·(-40)
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{11}}{2*1}=\frac{-4-4\sqrt{11}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{11}}{2*1}=\frac{-4+4\sqrt{11}}{2} $

See similar equations:

| 4x-1/3=x+52/3 | | 6=112+96t-16t^2 | | 3/4x^2=183/4 | | 2x+18+40=5x+7 | | 8x+2=-5(x-7)-4(x+6)-145 | | 5+8y-3=34 | | 24=x^2-4x+3 | | 0.04x=47.50 | | 3x+-4=-16+1x | | 9x+2=4(x-8)+2(x+2)+54 | | 8(x+5)=8(x+2)+24 | | d-2.8÷0.2=14 | | -(1-5x)=4(x-3) | | -4x^2+20x=-24 | | -8(x-6)=4x+48 | | -9(x+4)=4x-62 | | 5(x+4)=4x+23 | | -8x-5=2(3x+1)+2x | | 13x+4=3x+54 | | 2​(x−​6)+4=4x− | | 3(x-4=-5(x-4) | | 14x+8=-7x-118 | | 2t-1=17 | | 9x+4=2x+67 | | (8x-1)+(5x+36)+(6×+19)+(6x-2)+110+116=720 | | 10x+2=-3x-37 | | 3(x-4=-5(-4-4) | | -35+4y=-12 | | -7-9f=-10f-5 | | 6w=$12.56 | | -10+2a=-7+3a | | 48=−6(2n+8)+12n |

Equations solver categories