If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+(3/2x)+(3/2x-5)=75
We move all terms to the left:
x+(3/2x)+(3/2x-5)-(75)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 2x-5)!=0We add all the numbers together, and all the variables
x∈R
x+(+3/2x)+(3/2x-5)-75=0
We get rid of parentheses
x+3/2x+3/2x-5-75=0
We multiply all the terms by the denominator
x*2x-5*2x-75*2x+3+3=0
We add all the numbers together, and all the variables
x*2x-5*2x-75*2x+6=0
Wy multiply elements
2x^2-10x-150x+6=0
We add all the numbers together, and all the variables
2x^2-160x+6=0
a = 2; b = -160; c = +6;
Δ = b2-4ac
Δ = -1602-4·2·6
Δ = 25552
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{25552}=\sqrt{16*1597}=\sqrt{16}*\sqrt{1597}=4\sqrt{1597}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-4\sqrt{1597}}{2*2}=\frac{160-4\sqrt{1597}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+4\sqrt{1597}}{2*2}=\frac{160+4\sqrt{1597}}{4} $
| X=8+0.5z | | 2(3x-1)-(2x-14)=0 | | -6(p+5)=18 | | 3x-5+5x-1=2(4x-3) | | 7x+0=2x+1 | | 8z+8=32 | | 8x+6=9x+30 | | 3v^2-19v-72=0 | | x+3/4=x+7/6 | | x+2=3-1 | | 0x+2=6x+1 | | (33)2=n6 | | -30-30=5a | | 12-2a=4+a | | 10p+5=85 | | 4x+2=0x+1 | | 5n+1=46 | | -3(-6x+6)+6(4x-3)=-75 | | 7x-10+6x+5=180 | | 8-2y=1+y | | N+4=-2+4n-3 | | 2/x-1+3=1-2x/1-x | | 54+6x=72 | | 16x²-24x-13=0 | | 9.57z+4.69=13.46 | | 2x^2-5x-24=0 | | 41/4x=567/8 | | x-4/2x-9=0 | | 1/2(8x+4)=5 | | 7a-6=258 | | 13/3p-4+p=-4/5 | | Q=22-p |