x+(2x-14)+(1/2x+12)=180

Simple and best practice solution for x+(2x-14)+(1/2x+12)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(2x-14)+(1/2x+12)=180 equation:



x+(2x-14)+(1/2x+12)=180
We move all terms to the left:
x+(2x-14)+(1/2x+12)-(180)=0
Domain of the equation: 2x+12)!=0
x∈R
We get rid of parentheses
x+2x+1/2x-14+12-180=0
We multiply all the terms by the denominator
x*2x+2x*2x-14*2x+12*2x-180*2x+1=0
Wy multiply elements
2x^2+4x^2-28x+24x-360x+1=0
We add all the numbers together, and all the variables
6x^2-364x+1=0
a = 6; b = -364; c = +1;
Δ = b2-4ac
Δ = -3642-4·6·1
Δ = 132472
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{132472}=\sqrt{4*33118}=\sqrt{4}*\sqrt{33118}=2\sqrt{33118}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-364)-2\sqrt{33118}}{2*6}=\frac{364-2\sqrt{33118}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-364)+2\sqrt{33118}}{2*6}=\frac{364+2\sqrt{33118}}{12} $

See similar equations:

| 12-(3x+1)=18 | | m+(-10)=-3 | | 5r+30/15=3r-18/3 | | 5)4x-1.5x)+12=4x-3 | | 4r-3=9+12 | | -190=19b | | n+(-4)=-18 | | 6-9q6=q | | 83798293218-9380928092+98019380938-999+6666-420+1337+69=h | | -4(1-3x)=-4 | | 18=6(2x–8) | | 7y-2×3/4=1/2 | | 3a+9=27-a | | 39x-47=22x+38 | | 25+2x+5=90 | | P(x)=-x^2+10x+31 | | 20r^2+8r^2=0 | | 6.5-x=2.6 | | 4x+11=6x-16 | | -47=5(-9-4b)+20b | | -47=5(9-9-4b) | | X2+9x+40=0 | | 8a-14=54 | | Y+10=x-7=10 | | Y+10=x-5=10 | | -0.25(51+17x)=0 | | (3y+5)/(y-5)=0 | | -0.25(-12.5-4x)=0 | | (r-3)+(r+8)=68 | | x^2-2x+130=0 | | y-8.13=6.8 | | Y^2-2y+130=0 |

Equations solver categories