If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+(2/3x)=180
We move all terms to the left:
x+(2/3x)-(180)=0
Domain of the equation: 3x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
x+(+2/3x)-180=0
We get rid of parentheses
x+2/3x-180=0
We multiply all the terms by the denominator
x*3x-180*3x+2=0
Wy multiply elements
3x^2-540x+2=0
a = 3; b = -540; c = +2;
Δ = b2-4ac
Δ = -5402-4·3·2
Δ = 291576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{291576}=\sqrt{4*72894}=\sqrt{4}*\sqrt{72894}=2\sqrt{72894}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-540)-2\sqrt{72894}}{2*3}=\frac{540-2\sqrt{72894}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-540)+2\sqrt{72894}}{2*3}=\frac{540+2\sqrt{72894}}{6} $
| 9(2x+9.5)=-16.5+8x | | -7m^2=0 | | -(m+2)^2×2m+(m+2)(2m-3)×m+7m=0 | | 3-7x-9=50 | | 7m^2=0 | | -2(8+5x)=4 | | -7^2-14=7m | | 3x+15+6x-10=180 | | 7m=7m^2+14m | | -7m^2-14m=0 | | 7m^2-14m=0 | | -7m^2=-14m | | -12n=-6 | | -3(-2y+-8)=-6 | | 9(x+3)/2-6=3 | | 9e−7=7e−11; | | |-10n+4|/7=4 | | 45=8y | | -v-6=18 | | 31d^2=0 | | 1.25=(x-30/2) | | 12x-4=7x-9 | | 7k2−16k+100=0 | | 1/2(-4+6x)=1/3x+2/3(x-9 | | 7+3(2x+9)=40 | | 7+2(2x+9)=40 | | 5x+4=x–6 | | 2x-4=3x+4 | | 1/4q=35/4 | | 5+x-14=-15 | | 2=t-8/t | | g/5=-13/5 |