x+(1/5x)+(x+48)=180

Simple and best practice solution for x+(1/5x)+(x+48)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(1/5x)+(x+48)=180 equation:



x+(1/5x)+(x+48)=180
We move all terms to the left:
x+(1/5x)+(x+48)-(180)=0
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
x+(+1/5x)+(x+48)-180=0
We get rid of parentheses
x+1/5x+x+48-180=0
We multiply all the terms by the denominator
x*5x+x*5x+48*5x-180*5x+1=0
Wy multiply elements
5x^2+5x^2+240x-900x+1=0
We add all the numbers together, and all the variables
10x^2-660x+1=0
a = 10; b = -660; c = +1;
Δ = b2-4ac
Δ = -6602-4·10·1
Δ = 435560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{435560}=\sqrt{4*108890}=\sqrt{4}*\sqrt{108890}=2\sqrt{108890}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-660)-2\sqrt{108890}}{2*10}=\frac{660-2\sqrt{108890}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-660)+2\sqrt{108890}}{2*10}=\frac{660+2\sqrt{108890}}{20} $

See similar equations:

| 20+3x-15+x= | | 6=-4(8a-2)-5(a-7) | | 31a-27=6 | | x*0.08=500 | | 10/12=10x | | (32)10/10=x | | 198=-6(5+6x)-2x | | 10(x=4)=30 | | 40÷z=20 | | -2(1+5v)-6=-88 | | X+.4x=30.80 | | 21x=-336 | | a/17=-13 | | -4(-4k+4)=96 | | -3v-5v=24 | | 5/6x+2=10 | | 4/7x+3/7x-5=-2(x+4) | | 4x-2x+3=12+8(x-1) | | 13=10^x | | 14=10^x | | 16y+5=59+7y | | n+21+48=168 | | 20c-13=15c+62 | | 8n+6=38+4n | | 25h=450. | | 3t-7=5t,6t= | | x+(2*x)=5000 | | 12x–4(9x–20)=320 | | (X-3)(c-5)=0 | | r=10+√7 | | r=10+7 | | –45=–4(11+v)+3 |

Equations solver categories