x+(1/3x-20)=180

Simple and best practice solution for x+(1/3x-20)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(1/3x-20)=180 equation:



x+(1/3x-20)=180
We move all terms to the left:
x+(1/3x-20)-(180)=0
Domain of the equation: 3x-20)!=0
x∈R
We get rid of parentheses
x+1/3x-20-180=0
We multiply all the terms by the denominator
x*3x-20*3x-180*3x+1=0
Wy multiply elements
3x^2-60x-540x+1=0
We add all the numbers together, and all the variables
3x^2-600x+1=0
a = 3; b = -600; c = +1;
Δ = b2-4ac
Δ = -6002-4·3·1
Δ = 359988
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{359988}=\sqrt{4*89997}=\sqrt{4}*\sqrt{89997}=2\sqrt{89997}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-600)-2\sqrt{89997}}{2*3}=\frac{600-2\sqrt{89997}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-600)+2\sqrt{89997}}{2*3}=\frac{600+2\sqrt{89997}}{6} $

See similar equations:

| 711-4x=948-7x | | 0.16(y-4)+0.06y=0.14y-0.6 | | x+2=5x+30 | | 360=5x(4x+45) | | 0.16(y-4)+00.6y=0.14y-0.6 | | 3-2(x-7)+5x=47 | | 1/2b+6=18 | | x5=-2x-4 | | 11-54-8x=-2x | | y/11-6=3 | | 13+(x•2)=75 | | 8x-2-x-4x=3x+16 | | 2x+19+5x+1=90 | | x+30=-3x-6 | | -7x+3=2x-13 | | (2x+20)(2x+30)=375 | | 7(1-4b)+b=7+4b | | -2(5k-3)-3k=30-k | | 2x-9/6=x-3/2 | | -(n+3)=5n+27 | | 8(-6+x)=-16+4x | | 21.83=4g+3.63 | | 7x-22=-5 | | 3w=-4+7w | | -5(-2-8m)=10*5m | | 14x=-462 | | 1/2(8x+14)=12 | | -16=-6/5x+2 | | 9x=49.5 | | 2-6n=-2(4n+6)+8 | | -7(x-2)=14 | | -8+4x=-(-x-4) |

Equations solver categories