x+(1/3x+100)+(1.25x-10)=120

Simple and best practice solution for x+(1/3x+100)+(1.25x-10)=120 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(1/3x+100)+(1.25x-10)=120 equation:



x+(1/3x+100)+(1.25x-10)=120
We move all terms to the left:
x+(1/3x+100)+(1.25x-10)-(120)=0
Domain of the equation: 3x+100)!=0
x∈R
We get rid of parentheses
x+1/3x+1.25x+100-10-120=0
We multiply all the terms by the denominator
x*3x+(1.25x)*3x+100*3x-10*3x-120*3x+1=0
We add all the numbers together, and all the variables
x*3x+(+1.25x)*3x+100*3x-10*3x-120*3x+1=0
We multiply parentheses
3x^2+x*3x+100*3x-10*3x-120*3x+1=0
Wy multiply elements
3x^2+3x^2+300x-30x-360x+1=0
We add all the numbers together, and all the variables
6x^2-90x+1=0
a = 6; b = -90; c = +1;
Δ = b2-4ac
Δ = -902-4·6·1
Δ = 8076
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8076}=\sqrt{4*2019}=\sqrt{4}*\sqrt{2019}=2\sqrt{2019}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-2\sqrt{2019}}{2*6}=\frac{90-2\sqrt{2019}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+2\sqrt{2019}}{2*6}=\frac{90+2\sqrt{2019}}{12} $

See similar equations:

| 3x/7-16=x | | 17/8y=4.5 | | 7r-2/3r=0 | | 5d-6=3d+15 | | 1/3+1/4+x=35 | | 7x-5+4x=8x+9x+9 | | h−13=5 | | 3x-5=2(x-3)-x | | a=12/6(37)+17.7 | | 90+6x+13+4x-8=180 | | 4.1g+5=2.1g+11 | | 34-5=x-2+10 | | 2p+8=5+8(p+5) | | -4(2x+10)=-72 | | -w-5=11 | | 6.6x2= | | 5•n=-50 | | (6x+2)+(x+17)=18 | | 4z^2+15z+2=6 | | 5(2)^x-2=5125 | | 9+x=22-3 | | 8x-3(-5x+2)=155 | | x+121=60 | | -2(x+3)+5x=3(4-2x)-(×+2)= | | 15x+5=-10x-25 | | 3m+5=8/m= | | 703*(w/4096)=21.45 | | (-4x-3)=(8x9) | | 48+9x+4=83 | | 5/x-2+3x/4x-8=0 | | H=-16t^2+405 | | 12-n=3-4n |

Equations solver categories