If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x*2+(1/2)x+(1/4)x+1=100
We move all terms to the left:
x*2+(1/2)x+(1/4)x+1-(100)=0
Domain of the equation: 2)x!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 4)x!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
x*2+(+1/2)x+(+1/4)x+1-100=0
We add all the numbers together, and all the variables
x*2+(+1/2)x+(+1/4)x-99=0
We multiply parentheses
x^2+x^2+x*2-99=0
Wy multiply elements
x^2+x^2+2x-99=0
We add all the numbers together, and all the variables
2x^2+2x-99=0
a = 2; b = 2; c = -99;
Δ = b2-4ac
Δ = 22-4·2·(-99)
Δ = 796
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{796}=\sqrt{4*199}=\sqrt{4}*\sqrt{199}=2\sqrt{199}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{199}}{2*2}=\frac{-2-2\sqrt{199}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{199}}{2*2}=\frac{-2+2\sqrt{199}}{4} $
| 5=10/7x+4 | | (14+20)+(19-2i)=33-18i | | 10r+4=80 | | 6+3(x+10)=3 | | 12=p/3-15 | | 1/2(2p+9)=-p+5 | | 6(2x+4)=40 | | -32(a=4)62 | | D(t)=-200t+900 | | 2(3x-4)-16=0 | | 2z+1=3z-z+1 | | 3v/8=15 | | 4v-3=4v+6-v | | 2x+.89=92.99 | | 180=6x+5 | | 7(a-4)-1=13-4a | | 1/6(x-4/5)=-22/15 | | -1=n-5 | | X+1’3=x-1’4 | | 2-3r=20 | | 180-3x=(3=2x) | | 3d-1d=-5 | | 13÷s=4 | | n/8=12/32 | | -x-7+3(x-1)=(5x+2)/4 | | 18=2u-10 | | c+5/7=2 | | -6=5(u-3)-8u | | x+x+5x+3x+4x=270 | | 9y-5=8y+2 | | 12x-76=116 | | 2k+7=5k-5 |