If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+3)=50
We move all terms to the left:
x(x+3)-(50)=0
We multiply parentheses
x^2+3x-50=0
a = 1; b = 3; c = -50;
Δ = b2-4ac
Δ = 32-4·1·(-50)
Δ = 209
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{209}}{2*1}=\frac{-3-\sqrt{209}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{209}}{2*1}=\frac{-3+\sqrt{209}}{2} $
| -2g−2=-3g−10 | | m+-6=12 | | n-(-6-)=25 | | -6b-4=-4b+8 | | 32x•48=80x•12 | | 4x-3(2x-5)=-10 | | 7-2x-7=3-8x | | -6b−4=-4b+8 | | z=-2.2 | | (3x-5)(4x-1)=0 | | (2x-8)(2x+7)=0 | | -2x+19=5(x+1) | | 4g+8=3g | | 438-c=161 | | 161=438−c | | 32=4w^2 | | 3x=532 | | 2x-11=3x+4 | | 2x(3)=5x(3/4) | | 39+2x+15=180 | | 4m+4m=-16 | | 2-f=3f-10 | | 6x+4x=152 | | 9x+57=180 | | 3x+5-x=27 | | 12+7x-21=-8(3-×)+4x | | 8x-10x+23=67 | | -2q=-3q-7 | | r-5/6=-1 | | 6=11u-9u | | 6c=9+5c | | 5n-34=14-n |