x*(-4)=(2x+)(3-2x)

Simple and best practice solution for x*(-4)=(2x+)(3-2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x*(-4)=(2x+)(3-2x) equation:



x(-4)=(2x+)(3-2x)
We move all terms to the left:
x(-4)-((2x+)(3-2x))=0
We add all the numbers together, and all the variables
x(-4)-((+2x)(-2x+3))=0
We multiply parentheses
-4x-((+2x)(-2x+3))=0
We multiply parentheses ..
-((-4x^2+6x))-4x=0
We calculate terms in parentheses: -((-4x^2+6x)), so:
(-4x^2+6x)
We get rid of parentheses
-4x^2+6x
Back to the equation:
-(-4x^2+6x)
We get rid of parentheses
4x^2-6x-4x=0
We add all the numbers together, and all the variables
4x^2-10x=0
a = 4; b = -10; c = 0;
Δ = b2-4ac
Δ = -102-4·4·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{100}=10$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10}{2*4}=\frac{0}{8} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10}{2*4}=\frac{20}{8} =2+1/2 $

See similar equations:

| 8x+28=8+12x | | 3v+8=53 | | 3-(5-2x)=11-x | | -4.5(x-8.9=12.6 | | 15*m=550 | | r/4=0.775 | | 6.25x=-87.5 | | 2a-28=a+49 | | 30=26+g | | 3*4=(2+x)*5 | | c3− 1=3 | | 2(5x-1)=3(x=11) | | W*w-w=190 | | 6(1/6-x)=12.6 | | 6(1/6-x)=76 | | W^2-w=190 | | 3x=6+ | | 3m+8=29m=# | | 0=-16t^2-32t-32 | | 4(p+6)+6p=64 | | X+5/2=x-4/2 | | 2*25=15x*5 | | 2*25=5x* | | -0.8x-5.8=6.9(5.3+1.5x) | | 1=(5x-85​) | | A2=w | | 7(-2-5b)=-224 | | 35-3x=60-5x | | 7+6x=3(−x+9)−92 | | 3(1+4n)=-81 | | X+5÷2=x-4÷2 | | 3(n+8)+n=180 |

Equations solver categories