x(x-3)+x(x-4)=30-x

Simple and best practice solution for x(x-3)+x(x-4)=30-x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(x-3)+x(x-4)=30-x equation:



x(x-3)+x(x-4)=30-x
We move all terms to the left:
x(x-3)+x(x-4)-(30-x)=0
We add all the numbers together, and all the variables
x(x-3)+x(x-4)-(-1x+30)=0
We multiply parentheses
x^2+x^2-3x-4x-(-1x+30)=0
We get rid of parentheses
x^2+x^2-3x-4x+1x-30=0
We add all the numbers together, and all the variables
2x^2-6x-30=0
a = 2; b = -6; c = -30;
Δ = b2-4ac
Δ = -62-4·2·(-30)
Δ = 276
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{276}=\sqrt{4*69}=\sqrt{4}*\sqrt{69}=2\sqrt{69}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{69}}{2*2}=\frac{6-2\sqrt{69}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{69}}{2*2}=\frac{6+2\sqrt{69}}{4} $

See similar equations:

| -5=1+2n-6 | | (1/3y)y+11=(1/2)y-3 | | 935=5x3 | | 35+8k=-1+6(k+7) | | x5-2=2x+1 | | z/7+6=-40 | | 4w−12=8 | | -4(-10b-9)=9(9+5b) | | (1/3)y+11=(1/2)y-3 | | 4x2–16x–21=12 | | 5x5=x | | (t+1)=2(4t–5) | | 283=3-x | | 3/2t+2=T+4/4 | | 3/2t+2=T | | 223=180-u | | 107-w=229 | | 29y/30-8=2-5y/6 | | 196=117-u | | c-6=43 | | 64=-8(r+2) | | x^2-9=(x^2+0x-9) | | x/5+2=20 | | r=-0.96 | | 1/2(3+-4)=t+4/4 | | 3x+20+6x=180 | | b+10=70 | | 4/2x=18 | | 8=23−5u | | 2(x+3)=12-5 | | [2(1+2x)=10 | | 14+x+2=2 |

Equations solver categories