x(x-2)+(2x+8)+10=60

Simple and best practice solution for x(x-2)+(2x+8)+10=60 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(x-2)+(2x+8)+10=60 equation:



x(x-2)+(2x+8)+10=60
We move all terms to the left:
x(x-2)+(2x+8)+10-(60)=0
We add all the numbers together, and all the variables
x(x-2)+(2x+8)-50=0
We multiply parentheses
x^2-2x+(2x+8)-50=0
We get rid of parentheses
x^2-2x+2x+8-50=0
We add all the numbers together, and all the variables
x^2-42=0
a = 1; b = 0; c = -42;
Δ = b2-4ac
Δ = 02-4·1·(-42)
Δ = 168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{168}=\sqrt{4*42}=\sqrt{4}*\sqrt{42}=2\sqrt{42}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{42}}{2*1}=\frac{0-2\sqrt{42}}{2} =-\frac{2\sqrt{42}}{2} =-\sqrt{42} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{42}}{2*1}=\frac{0+2\sqrt{42}}{2} =\frac{2\sqrt{42}}{2} =\sqrt{42} $

See similar equations:

| 18=3y-3 | | 24=6m+48 | | ​9(x+​6)=−207 | | 8=10s-22 | | 7(x-5)-10x=-8 | | 2(c-58)=82 | | 82=3x | | 4(5x-29=2(9x+3) | | -x–2=12 | | (4n-5)=115 | | 8(x+4)=65 | | 3x+29=13x91 | | -m–2=12 | | 15x+11-7x=-5 | | 84=6(f+1) | | x+45=2x+45 | | -24+2x+x=12 | | 2x+2x+2+26=180 | | 5(2^x+4)=15. | | 8x+46=13-4x | | j/3+15=19 | | -4x-48-x=12* | | 2x+6+4x=12 | | 3(2x=4)=2(x=4) | | 6x+4x-53=37 | | 19-2z=3(z-2) | | -4x-11-2x=25 | | 5s-6=2 | | 2x=14;x=9 | | g-34/10=5 | | -46-2x-3x=19 | | 6x+37=90 |

Equations solver categories