If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+8)=116
We move all terms to the left:
x(x+8)-(116)=0
We multiply parentheses
x^2+8x-116=0
a = 1; b = 8; c = -116;
Δ = b2-4ac
Δ = 82-4·1·(-116)
Δ = 528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{528}=\sqrt{16*33}=\sqrt{16}*\sqrt{33}=4\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{33}}{2*1}=\frac{-8-4\sqrt{33}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{33}}{2*1}=\frac{-8+4\sqrt{33}}{2} $
| –2g+1=2−2g | | 6d+7d+d=+9 | | 10=g-3 | | 17=h-(-1) | | 0.08x-1.4=4.2 | | 81=27^x | | 1/2(x^2+x-3+2x-7)=15 | | C(x)=25+.35x | | 5+x+7+10+3x=3 | | -16=-d/4-19 | | 10+7a=24 | | 10+7a=234 | | x-4/5/6=7/6/7 | | 20-2p=42 | | 4+k/2=5 | | 53-2x^2=21 | | 1x/5+1/3=1 | | 68=r/7+62 | | -14y=0 | | Y=-16t^2+4t+2 | | x+2=20x+20 | | 6n^2-8n+56=0 | | ((7x+6)/7))=((7x-1)/14) | | -8(4-x=4/5(x+14 | | 5/3n=20/9 | | –13n−17n−–16n−–n=13 | | r/2+15=19 | | -1/3+5/e=-3/4 | | a3=-64 | | 7(2x+5x)=3x+78 | | 1/6w-7=0 | | 3x/4=40 |