If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+60)=6496
We move all terms to the left:
x(x+60)-(6496)=0
We multiply parentheses
x^2+60x-6496=0
a = 1; b = 60; c = -6496;
Δ = b2-4ac
Δ = 602-4·1·(-6496)
Δ = 29584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{29584}=172$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-172}{2*1}=\frac{-232}{2} =-116 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+172}{2*1}=\frac{112}{2} =56 $
| Y-12y+32=0 | | 20j=–17+19j | | 3b-36=0 | | 4w-7=18 | | 2/3w+2=12 | | 5k+3=147 | | -0.7(2x-7)=-0.3(11-4x) | | 5k+3=66 | | 8z+5=6z+4 | | 5k+3=99 | | 2x=16+7 | | 3x-4-3(x-2)=0 | | 2=r/4−2 | | 2=r/4− 2 | | 11x+3=-8 | | -2=v-9/2 | | 3(2x-5)(2x+3)=0 | | -5(x+4)-3=12 | | 22=22n | | 250+25x=100x+50 | | 3b−11=7 | | 121.11^(x-2)=3.11^x-22 | | 11=x/5+9 | | 4x-6+8+3= | | (2x−3)(x−5)=0 | | 7(x+1)=8(x-2)= | | 1x-1=9+x | | 7x+1=8x-2= | | -25=-13+4x+12 | | 9c+3=8c+6 | | 5(x+1)=-10(x-5) | | f-4=10 |