If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+6)=90
We move all terms to the left:
x(x+6)-(90)=0
We multiply parentheses
x^2+6x-90=0
a = 1; b = 6; c = -90;
Δ = b2-4ac
Δ = 62-4·1·(-90)
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{11}}{2*1}=\frac{-6-6\sqrt{11}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{11}}{2*1}=\frac{-6+6\sqrt{11}}{2} $
| 2x-4/3=1/4x+2 | | (90x+1)+(x+-90)=900 | | x=12.00+0.25x | | 4n+3+2n-7=20 | | (90x+1)+(x+-90)=90 | | 16x=4x-84 | | (90x+90)+(x+-90)=90 | | 5/4x-7=-5 | | 109g=5)=2(g+9) | | a-7=-27 | | (10x+1)+(x+-10)=90 | | 12/6x=2 | | (10x+10)+(x+-50)=90 | | (7y+3)+(3y+3)=90 | | (10x+1)+(x+-50)=90 | | F(x+2)=2x+3 | | (2x+1)+(x+-50)=90 | | 88-y=44 | | (2x+1)+(x+-30)=90 | | 20-9x=1+10x | | 22-7/4x=7/4x+22 | | 88-y=-44 | | 2.7=7.8+y | | 40+2m=6m-3(-8m-8) | | 2p2+8p=-3 | | 2m-4=5+5m | | F(x+4)=7(x+4)-5 | | 4(2n+5)-8=36 | | X+14=x-6 | | -8=-5.2+n | | 2c+5.5=8.9 | | -2(z+2)-6(z+1=98 |