If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+6)=132
We move all terms to the left:
x(x+6)-(132)=0
We multiply parentheses
x^2+6x-132=0
a = 1; b = 6; c = -132;
Δ = b2-4ac
Δ = 62-4·1·(-132)
Δ = 564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{564}=\sqrt{4*141}=\sqrt{4}*\sqrt{141}=2\sqrt{141}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{141}}{2*1}=\frac{-6-2\sqrt{141}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{141}}{2*1}=\frac{-6+2\sqrt{141}}{2} $
| X=2.5x=-7 | | 3x-5/3=2/7 | | -7-3(8x-3)=-94 | | F(-9)=2x+5 | | 7r-3(-5r-1)=-85 | | -108=6(-3p-6) | | y=-4+2(1) | | y=-4+2(0) | | y=-4+2(-2) | | 5y+42=5y-2 | | x3-6x2-x+22=0 | | 86=-5+7(5+v) | | 5x+2+2=-4+3x | | -4(2+6v)=160 | | -6-7(c+10)=64-7c | | M+11=-3+3m | | -1/4(3-r)=5/4=1/2r | | -102=-3v-6(5+v) | | 58=-4(-7x-4)-2(x+5) | | 6(1-8v)-8(3v-4)=38 | | -1=-2(-4)+b | | -40-8b=-8(-3+5b) | | -3(5-5r)=12+6r | | 3z+4=5z+2 | | 7b-7-5=2 | | 13/4+1/3t=8 | | -1=-2/3(-4)+b | | 3(2x-1)^2-2(2x-1)+5=0 | | 7=6x^2-x | | 144=8(2x+2) | | -85=-5(1+4n) | | X3+2x+20=0 |