If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+54)-180=0
We multiply parentheses
x^2+54x-180=0
a = 1; b = 54; c = -180;
Δ = b2-4ac
Δ = 542-4·1·(-180)
Δ = 3636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3636}=\sqrt{36*101}=\sqrt{36}*\sqrt{101}=6\sqrt{101}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(54)-6\sqrt{101}}{2*1}=\frac{-54-6\sqrt{101}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(54)+6\sqrt{101}}{2*1}=\frac{-54+6\sqrt{101}}{2} $
| 2x-4+7=-5 | | s=0.75+4.20 | | 64=4(44-a) | | 18v+72=180 | | 6t-54=2t-6 | | 0.25(x+20)-0.08(x-60)=-0.4 | | 4y+24=64 | | -4=-6x+5x | | Z+84=6z-72 | | 2/5-r/6=-1/6 | | 6z-72=z+84 | | x^+6x=-3x+162 | | 13x+2=2x+3 | | 6-p-2=5 | | c-8=2c-69 | | 2c-69=c-8 | | 11p+85=7p+89 | | s+21=14s+8 | | 21x^-14x=0 | | 4x32=180 | | 7t-39=t | | t=7t-39 | | 2y-(3y/4)=20 | | 6+2r+5r=-8 | | 6y=20-16 | | 5a^2+11a-11=0 | | 26+q=27+6 | | 60-x=48 | | 3y+5=-17 | | 0.7x+0.4=3.69 | | 4a=9+12 | | -a/7=14 |