If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+54)+180=0
We multiply parentheses
x^2+54x+180=0
a = 1; b = 54; c = +180;
Δ = b2-4ac
Δ = 542-4·1·180
Δ = 2196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2196}=\sqrt{36*61}=\sqrt{36}*\sqrt{61}=6\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(54)-6\sqrt{61}}{2*1}=\frac{-54-6\sqrt{61}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(54)+6\sqrt{61}}{2*1}=\frac{-54+6\sqrt{61}}{2} $
| 4s+116=180 | | 4(x^2+21x-176)=0 | | (36/9)•2-9y=8(y-4+9) | | 10w+16+90+34=180 | | 4(x^2+21-176)=0 | | -5x-30=70 | | 6g+10=100 | | 12c-6c-2c=8 | | -2w+4=-14 | | -10x-9+8x=-4x-5 | | 7u+26+57+90=180 | | 7v+57=6v+60 | | 6b+10=100 | | 7a+44+32+90=180 | | 5x-3/2x+5=0 | | x/3=-2+3 | | 2b-14+58+90=180 | | 9h-4=-40 | | 3a-47=a+3 | | 14s+110=180 | | -2y+6y=8+4 | | t=2t-36 | | 2w+15+63+90=180 | | 2u+32+90=180 | | b=7b-90 | | 8−5b=−7 | | -19-a=-15 | | 90+34+7z=180 | | x+82=6x+72 | | 4t+90+58=180 | | 10x+15=3x+57 | | 90+58+5t=180 |