If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+4)=154
We move all terms to the left:
x(x+4)-(154)=0
We multiply parentheses
x^2+4x-154=0
a = 1; b = 4; c = -154;
Δ = b2-4ac
Δ = 42-4·1·(-154)
Δ = 632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{632}=\sqrt{4*158}=\sqrt{4}*\sqrt{158}=2\sqrt{158}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{158}}{2*1}=\frac{-4-2\sqrt{158}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{158}}{2*1}=\frac{-4+2\sqrt{158}}{2} $
| 1-1/k^2=0.8889 | | 9=-8x+6x+x | | .25x=250000 | | 50=2.5/(x-0.03) | | 3=-3x+39= | | W2+3w-40=0 | | 9x-10=8x+7= | | 9x-10=8x+7 | | 4x+9-5x=7 | | 4(2x-5)=6x-4 | | (n+5)×6=54 | | (2x+5)-(4x-3)=0 | | 5k-k+2k=18 | | -18y*2y=0 | | (2y^2-14y+20)/(y^2+5y-14)=0 | | 2(5x+23)=-3x-9 | | 36x^2+121x=0 | | 0.01=0.75^n | | 3x2-243= | | 5x=12+3x+13 | | 3x^2-44=-41 | | X^2+6x=12x | | X^2+3x=-7x | | (E2+E+1)y=0 | | -58x^2-443=134 | | 498x^2-78=-78 | | -239x^2-43=79 | | z/8+7=8 | | -4x+5=-x+15 | | -780x^2-72=-72 | | 753x^2+199=242 | | -885x^2-347=-295 |