If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+4)=124
We move all terms to the left:
x(x+4)-(124)=0
We multiply parentheses
x^2+4x-124=0
a = 1; b = 4; c = -124;
Δ = b2-4ac
Δ = 42-4·1·(-124)
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-16\sqrt{2}}{2*1}=\frac{-4-16\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+16\sqrt{2}}{2*1}=\frac{-4+16\sqrt{2}}{2} $
| 3j−j=16 | | 1/3v+3=7 | | 7x-2=6x-1 | | 10m+14=11m | | 1/3=11/6n-3/2n | | -7k-2=-10-6k | | 2x-4(x-4)=-3+4x+1 | | -5+w=-4w | | y/15.36+4=10 | | 21.5=-4.1+8u | | 13x+3=23 | | 8+8u=2+10u | | 2p-8=10+10+6p | | 10c+8=2c | | -4j+10=j | | 4y-4/5=-3/2y-7/5 | | 2-5z=-4-6z | | 12x+4=8x+4+4x | | 7x+11=3x+7+3x+22+180 | | 1+8b=10+7b | | z^2-8z+2=11 | | n/3-18=18 | | 10h=9h-3 | | 6x+20=5x-13 | | -4K+2(k+6)=36+4k | | -10-2n=n | | 5x-13=2x-9 | | 4x+8-x=2x+15 | | -10-2n=-2n | | -9-b=-10b | | 3x-5(x+4)=-3+2x+7 | | 8k-7=7k |