x(x+4)=(x+1)2

Simple and best practice solution for x(x+4)=(x+1)2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(x+4)=(x+1)2 equation:



x(x+4)=(x+1)2
We move all terms to the left:
x(x+4)-((x+1)2)=0
We multiply parentheses
x^2+4x-((x+1)2)=0
We calculate terms in parentheses: -((x+1)2), so:
(x+1)2
We multiply parentheses
2x+2
Back to the equation:
-(2x+2)
We get rid of parentheses
x^2+4x-2x-2=0
We add all the numbers together, and all the variables
x^2+2x-2=0
a = 1; b = 2; c = -2;
Δ = b2-4ac
Δ = 22-4·1·(-2)
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{3}}{2*1}=\frac{-2-2\sqrt{3}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{3}}{2*1}=\frac{-2+2\sqrt{3}}{2} $

See similar equations:

| N+(n+1)=91 | | 23-(2x-10)=5x-22 | | a-7=-(7-a) | | 4x+2x+2x-x=35+2x | | (x-3)/4 =(2x-1)/5 | | 100x+50=0 | | 1/2(1/2x+2/5)=1 | | s*6+28=196 | | 4(3x-5-2x)=0 | | 6s+28=196 | | 1/2(2/3x+2/5)=1 | | 3c=-72 | | 2x+98=58 | | x-(0,5-0,3)=0,2 | | 10x-2(3x-8)=12 | | 4x-2=5-x | | 37+5x=2 | | 2x-5=10x+30 | | x+3/1-x=-9/x | | 2y+18=6(y+1) | | 8+4x=6x+0 | | 6(2x-5=54 | | 1/2x=6/1 | | x-15=1/6x | | 5x+38=48 | | (2x-5)-4=-2 | | 5p+2=8+3p | | (2x-5)-4=2 | | 15=1/6x | | 5x-2(3x-4)=12 | | -5(x-7)+13=3 | | 8y-4=6y-34 |

Equations solver categories