If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+2)=792
We move all terms to the left:
x(x+2)-(792)=0
We multiply parentheses
x^2+2x-792=0
a = 1; b = 2; c = -792;
Δ = b2-4ac
Δ = 22-4·1·(-792)
Δ = 3172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3172}=\sqrt{4*793}=\sqrt{4}*\sqrt{793}=2\sqrt{793}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{793}}{2*1}=\frac{-2-2\sqrt{793}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{793}}{2*1}=\frac{-2+2\sqrt{793}}{2} $
| 4+5x=5+5x | | z^2=z+1 | | -5(2x+8)=10-3(x-2) | | -(2x-4)-(9x-6)+9=-3(x-1)-(13x+2)+3 | | 4(x-6)-7=-31 | | 3t^2+21t=0 | | 20y-10=14y+10 | | 4x+6=-102 | | 10+7x=2x+50 | | 5(m-22)-6(4m-3)=60 | | 4(3x+8)=-28+36 | | (w-6)^2=2w^2-15w+18 | | 6^(x-1)=18 | | (3^x+2)-(3^x+1)=162 | | 4=2/5(3d-5) | | (125x+45)=180 | | (125x+45=180 | | 4x+4=-29+7x | | 10+6x=4x+26 | | |5x-4|=6;2 | | -3p+5+12p=9p-4 | | m2+-24m=0 | | a+500=a*1.05 | | 4b+8=52 | | 15=t/2+12 | | 7(6-2k)=5(-3k+1) | | 6x^2-24x=-24 | | 3=j/2+1 | | 4a/7=9 | | c/2-8=10 | | 3^x+2-3^x+1=162 | | v/27=8 |