x(x+2)-(x+3)=1-3x

Simple and best practice solution for x(x+2)-(x+3)=1-3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(x+2)-(x+3)=1-3x equation:



x(x+2)-(x+3)=1-3x
We move all terms to the left:
x(x+2)-(x+3)-(1-3x)=0
We add all the numbers together, and all the variables
x(x+2)-(x+3)-(-3x+1)=0
We multiply parentheses
x^2+2x-(x+3)-(-3x+1)=0
We get rid of parentheses
x^2+2x-x+3x-3-1=0
We add all the numbers together, and all the variables
x^2+4x-4=0
a = 1; b = 4; c = -4;
Δ = b2-4ac
Δ = 42-4·1·(-4)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{2}}{2*1}=\frac{-4-4\sqrt{2}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{2}}{2*1}=\frac{-4+4\sqrt{2}}{2} $

See similar equations:

| 7x+18=15x+10 | | 7x+3=4+(x+1) | | -112=4k-4(-3k+4) | | 10a-12=8 | | 5+5x+120+6+2x=180 | | 3(m-6)=m | | -1x+9=-1x+9 | | 1x+9=-1x+9 | | 1x+9=-1x-9 | | x×7=161 | | 0=7z+3 | | 5/4x=80 | | 8h-15=27+9h | | x+55+100+x+35=180 | | 62+x+50+x+92=180 | | 25=-7-2p | | x+50+100+x+50=108 | | 104+x+34+x+60=180 | | 59-6x=7(4x-11) | | x+55+54=180 | | 10x+-5+10x+10+125=180 | | 10x-5+10x+10+125=180 | | 34^x−9=1/243 | | x+102+46=180 | | 3²x-¹=27² | | x+60+76+x+24=180 | | 46+x+39+x+105=180 | | 0.7(m+3.2)=3.5 | | 16x+6+80+7x+2=180 | | -5x=10=-10 | | 14.3+6x=3.9+2(x+1) | | -7x+6=10x |

Equations solver categories