x(x+2)+(x-1)2x-1=17

Simple and best practice solution for x(x+2)+(x-1)2x-1=17 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(x+2)+(x-1)2x-1=17 equation:



x(x+2)+(x-1)2x-1=17
We move all terms to the left:
x(x+2)+(x-1)2x-1-(17)=0
We add all the numbers together, and all the variables
x(x+2)+(x-1)2x-18=0
We multiply parentheses
x^2+2x^2+2x-2x-18=0
We add all the numbers together, and all the variables
3x^2-18=0
a = 3; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·3·(-18)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{6}}{2*3}=\frac{0-6\sqrt{6}}{6} =-\frac{6\sqrt{6}}{6} =-\sqrt{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{6}}{2*3}=\frac{0+6\sqrt{6}}{6} =\frac{6\sqrt{6}}{6} =\sqrt{6} $

See similar equations:

| 18=4.5=6m+12 | | 5-4q=7q-9-4q | | 15+3v+2v=5+4v+5 | | 6=7u-1 | | 4(2x+3)-5=-3x+4 | | 3.3+10m=8.75 | | 24=x/5+7 | | 4(2x-5)=84 | | 2n+2=4n-6 | | -2+10x+84=25+7 | | 2h+6-4h=6h-5.2 | | -7x+8=12x-9 | | 3-2x/x=7 | | 8+3m=-1+2m | | 4(x+9)-29=5(3x+9) | | 3+v-7v=-3v-6 | | 4.5m=6m | | 3x+2-2x+1=8 | | -15z=105 | | 3+9n=150 | | 16=z-3 | | x+57=2x-30 | | 12(1/2x+4)=3(2x-5) | | x6-7=85 | | 3x+4-2=16 | | 18-11g=-18g+9+8g | | n^-1/2=9 | | 2x-4(x-2)=-7+3x-10 | | 7/2-3x/2=8 | | x²-8x+21=2x-7 | | 3(4c-1)-14=10c+3 | | 17(50)+22x=2,566 |

Equations solver categories