x(x+102)=2440

Simple and best practice solution for x(x+102)=2440 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(x+102)=2440 equation:



x(x+102)=2440
We move all terms to the left:
x(x+102)-(2440)=0
We multiply parentheses
x^2+102x-2440=0
a = 1; b = 102; c = -2440;
Δ = b2-4ac
Δ = 1022-4·1·(-2440)
Δ = 20164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{20164}=142$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(102)-142}{2*1}=\frac{-244}{2} =-122 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(102)+142}{2*1}=\frac{40}{2} =20 $

See similar equations:

| 2x–1=4x+7 | | 57.47d-26.72=235.63 | | r^2+r=24/25 | | (50-2x)(40-2x)=875 | | (50-2x)(40-2x)=2000 | | x=1600 | | 7-x/5=-3/2 | | 4=3/4-x | | -x-3x-12=-6x+18 | | 7x-1/5=11 | | -6x+1/2=3 | | (a/4-20)^2=0 | | (1/4a-20)^2=0 | | x+x+800+x+1600=8000 | | ((1/4)x-20)^2=0 | | 6x+8(-4+19)=22 | | 6x+8(-9x+19)=22 | | 82+20+18=2y | | (x^2)/16-10x+400=0 | | 23x+19=3x-221 | | 7x/9+1=2 | | -3=7p-10 | | b+b/2=92 | | 57=19(1-p) | | c+13c=126 | | 6=-2x-5 | | 3z+19-6(2)=31 | | 12+9=y-12 | | (x-12)÷3=8 | | .-3+x=-76 | | -3(x+2)-3x=4(2-5x) | | (x/4-20)^2=0 |

Equations solver categories