x(x+1)=35+(x+x+1)

Simple and best practice solution for x(x+1)=35+(x+x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(x+1)=35+(x+x+1) equation:



x(x+1)=35+(x+x+1)
We move all terms to the left:
x(x+1)-(35+(x+x+1))=0
We add all the numbers together, and all the variables
x(x+1)-(35+(2x+1))=0
We multiply parentheses
x^2+x-(35+(2x+1))=0
We calculate terms in parentheses: -(35+(2x+1)), so:
35+(2x+1)
determiningTheFunctionDomain (2x+1)+35
We get rid of parentheses
2x+1+35
We add all the numbers together, and all the variables
2x+36
Back to the equation:
-(2x+36)
We get rid of parentheses
x^2+x-2x-36=0
We add all the numbers together, and all the variables
x^2-1x-36=0
a = 1; b = -1; c = -36;
Δ = b2-4ac
Δ = -12-4·1·(-36)
Δ = 145
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{145}}{2*1}=\frac{1-\sqrt{145}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{145}}{2*1}=\frac{1+\sqrt{145}}{2} $

See similar equations:

| 1.3x-4=-31 | | 2*(k+1)=14 | | x=15+842/3 | | -7x=18-3x-2 | | 3(x-3)=x(4x-12) | | -3x+2=-5x-18 | | 3x+4=3x4 | | 2d+2= | | 7x+10=12x-75 | | 2k-12+3k=3k+4 | | 6x²=510 | | 15x+10-8x-3=10x+9-4x+6 | | x+21/2=62 | | 5,4^x=425 | | Y-30+x=180 | | 180+48+x=360 | | Y=88–16x | | x-30x/100-25x/100-100x/100=210 | | 3x^2-33=30x | | 1.10d+0.01(d+4)=4 | | 49x2-1=0 | | -x-3=-2x+3,75 | | 6x-40=76. | | 9u-203=50 | | X*y=42 | | )36x-25=24x-26 | | 50=203-9u | | X-0.12x=126 | | 15x-4=20+9x | | 22x=9+30 | | 9x-6=14x-3 | | X+10°+4x=180° |

Equations solver categories