x(x+1)+(x+2)+(x+3)=24

Simple and best practice solution for x(x+1)+(x+2)+(x+3)=24 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(x+1)+(x+2)+(x+3)=24 equation:



x(x+1)+(x+2)+(x+3)=24
We move all terms to the left:
x(x+1)+(x+2)+(x+3)-(24)=0
We multiply parentheses
x^2+x+(x+2)+(x+3)-24=0
We get rid of parentheses
x^2+x+x+x+2+3-24=0
We add all the numbers together, and all the variables
x^2+3x-19=0
a = 1; b = 3; c = -19;
Δ = b2-4ac
Δ = 32-4·1·(-19)
Δ = 85
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{85}}{2*1}=\frac{-3-\sqrt{85}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{85}}{2*1}=\frac{-3+\sqrt{85}}{2} $

See similar equations:

| 482+528x=13082-72x | | 2x+1/3x-2=5/2 | | 9n+3n^2+4.75=0 | | 321x+526=926+21x | | 625x-751=650x-766 | | 2856x+753=1931x+1400,5 | | 2x+3(x-1)=5/2 | | 5-(2x-3)=1 | | 6-25s-15s-13=25s+23 | | 5(-7y-1)/y=-70 | | y*4-22=8 | | p/6-24=24 | | 102-2x=-10 | | 8^x=32^2x-12 | | h/14-25=19 | | q^2+2Q-40Q=0 | | 6•1y-1-3y=998 | | s*10=7 | | (12x+9)/(x+1)=12 | | 5x4-4=4+4+3 | | |8x+4/5|=15 | | 4x+5+x=15 | | X*y/2=50 | | (7x+5)(6x-4)=0 | | X.y=50 | | (7x-1)(x-3=0 | | 4*(2x-9)=20 | | 4x+3=-11+2x | | -8=4(x-1 | | 0=(t+0.75)(6-1.5t) | | 35=5(x+9 | | 4y+3y+1=57 |

Equations solver categories