If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(7x+28)=0
We multiply parentheses
7x^2+28x=0
a = 7; b = 28; c = 0;
Δ = b2-4ac
Δ = 282-4·7·0
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-28}{2*7}=\frac{-56}{14} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+28}{2*7}=\frac{0}{14} =0 $
| -51(1-5x)+5(-8x-2)=-4x-8x | | 3x-31+31=x+59+31 | | (6x-18)(7x+14)=0 | | 9x+7x+3×=266 | | (5x-10)(4x+24)=0 | | 5d+-4d+9=0 | | 5s+-14s-10=-19 | | 5s+-14s−10=-19 | | 3x×1x+17-12=680 | | 1.1(f+3)+6.5=19.7 | | 8.96+14.8z=-13z+0.62 | | 8,96+14.8z=-13z+0.62 | | -0.8(u+17)+17.44=3.04 | | 3(u+4)-9=9 | | -w-4w+16=-9 | | 14c=15c-6 | | 18t-14t=8 | | -13t-1=19-12t | | 17r-11r-6=18 | | -20u-10=-18u | | -7+15r=16r | | 12g-12=8g | | 5v=9=-51 | | 8x+4+4x-7=180 | | (a-3)=-18 | | 8x+5+4x+17=180 | | 8x+5=8+4x+17=180 | | 25+7y=-25+2y | | 7x-45=5x+2 | | x2+25x+100=0 | | 9x+5x=6x-4 | | 3x+2=3+2x+23=180 |