x(53+x)-(53+x)=233

Simple and best practice solution for x(53+x)-(53+x)=233 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(53+x)-(53+x)=233 equation:



x(53+x)-(53+x)=233
We move all terms to the left:
x(53+x)-(53+x)-(233)=0
We add all the numbers together, and all the variables
x(x+53)-(x+53)-233=0
We multiply parentheses
x^2+53x-(x+53)-233=0
We get rid of parentheses
x^2+53x-x-53-233=0
We add all the numbers together, and all the variables
x^2+52x-286=0
a = 1; b = 52; c = -286;
Δ = b2-4ac
Δ = 522-4·1·(-286)
Δ = 3848
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3848}=\sqrt{4*962}=\sqrt{4}*\sqrt{962}=2\sqrt{962}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(52)-2\sqrt{962}}{2*1}=\frac{-52-2\sqrt{962}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(52)+2\sqrt{962}}{2*1}=\frac{-52+2\sqrt{962}}{2} $

See similar equations:

| 5-6t=-7t | | -4p=-5p+6 | | X-6=4y+4 | | 158+2x=980 | | 53x*(53-x)=2330 | | g+(-5)=27g | | (-5x)+(-29^2)=0 | | 2t-3=12-t | | 4(x-4)-19=43 | | -3j=-4j+1 | | 5-4x=3x-205 | | 4n+132=10n-6 | | 3v=4v+2 | | 5a^2=-14a | | 4m+6=26m= | | 11x+8=x(2x+5) | | 8-4t=-5t | | (3x+5)2=7x+4 | | 8u+3=7u | | 8u=3=7u | | 1800/4=8400/x | | 35+3x+-11=23 | | 3-3b=-4b | | 4x/7-3x/14=1/21 | | 2y-16=5y+15 | | 7(j-96)=21 | | 6+4x=(6x+9)÷3 | | X+3+2+6-7+2x+6=44 | | 3131=31(p+20) | | 5(10^4x)=4 | | 3x-2+2x+6=44 | | 52=1n÷3 |

Equations solver categories