x(3x+5)=270

Simple and best practice solution for x(3x+5)=270 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(3x+5)=270 equation:


Simplifying
x(3x + 5) = 270

Reorder the terms:
x(5 + 3x) = 270
(5 * x + 3x * x) = 270
(5x + 3x2) = 270

Solving
5x + 3x2 = 270

Solving for variable 'x'.

Reorder the terms:
-270 + 5x + 3x2 = 270 + -270

Combine like terms: 270 + -270 = 0
-270 + 5x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-90 + 1.666666667x + x2 = 0

Move the constant term to the right:

Add '90' to each side of the equation.
-90 + 1.666666667x + 90 + x2 = 0 + 90

Reorder the terms:
-90 + 90 + 1.666666667x + x2 = 0 + 90

Combine like terms: -90 + 90 = 0
0 + 1.666666667x + x2 = 0 + 90
1.666666667x + x2 = 0 + 90

Combine like terms: 0 + 90 = 90
1.666666667x + x2 = 90

The x term is 1.666666667x.  Take half its coefficient (0.8333333335).
Square it (0.6944444447) and add it to both sides.

Add '0.6944444447' to each side of the equation.
1.666666667x + 0.6944444447 + x2 = 90 + 0.6944444447

Reorder the terms:
0.6944444447 + 1.666666667x + x2 = 90 + 0.6944444447

Combine like terms: 90 + 0.6944444447 = 90.6944444447
0.6944444447 + 1.666666667x + x2 = 90.6944444447

Factor a perfect square on the left side:
(x + 0.8333333335)(x + 0.8333333335) = 90.6944444447

Calculate the square root of the right side: 9.523363085

Break this problem into two subproblems by setting 
(x + 0.8333333335) equal to 9.523363085 and -9.523363085.

Subproblem 1

x + 0.8333333335 = 9.523363085 Simplifying x + 0.8333333335 = 9.523363085 Reorder the terms: 0.8333333335 + x = 9.523363085 Solving 0.8333333335 + x = 9.523363085 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = 9.523363085 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = 9.523363085 + -0.8333333335 x = 9.523363085 + -0.8333333335 Combine like terms: 9.523363085 + -0.8333333335 = 8.6900297515 x = 8.6900297515 Simplifying x = 8.6900297515

Subproblem 2

x + 0.8333333335 = -9.523363085 Simplifying x + 0.8333333335 = -9.523363085 Reorder the terms: 0.8333333335 + x = -9.523363085 Solving 0.8333333335 + x = -9.523363085 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = -9.523363085 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = -9.523363085 + -0.8333333335 x = -9.523363085 + -0.8333333335 Combine like terms: -9.523363085 + -0.8333333335 = -10.3566964185 x = -10.3566964185 Simplifying x = -10.3566964185

Solution

The solution to the problem is based on the solutions from the subproblems. x = {8.6900297515, -10.3566964185}

See similar equations:

| 7x+9+2x=7x+19+x | | 16t^2+150t+110=0 | | 180-(3x-14)= | | 3/4y-1=8 | | 6s^3t^2-24s^3t^2=0 | | 1-6a=2 | | 16t^2+150t+110=h | | 11x+1=10x | | ln(x)-ln(6)=-ln(x+1) | | 4+4n=5 | | x^2+2x=45 | | 21x+77+4x+16=8 | | 4/7K=20 | | -8(-5x+8)=4x | | 1.8c+32=5 | | 2x-8yi=24-56i | | 180-(4x-101)= | | 4(x+7)=-8(x+2) | | -4x^2+11x+5=0 | | 7a-4-2(a+5)+25=2a-5 | | 180-(2x+3)= | | -1/6x-3=2/3x | | 36g^2-49=0 | | 7a-4-2(a+5)+256(a-3)+2a=4(a-1)2a-5 | | 9/3x=-2 | | 5/9-4=6 | | (9+x)(12+x)=180 | | 0.941x^2+564.7x-265200=0 | | 7x^2-38x=-103 | | A^2+10=42 | | 0.731=(0.03-x)/x | | 5x-3(7x-11)=113 |

Equations solver categories