x(2x-3)-2(3+2x)=-4(x-1)

Simple and best practice solution for x(2x-3)-2(3+2x)=-4(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(2x-3)-2(3+2x)=-4(x-1) equation:



x(2x-3)-2(3+2x)=-4(x-1)
We move all terms to the left:
x(2x-3)-2(3+2x)-(-4(x-1))=0
We add all the numbers together, and all the variables
x(2x-3)-2(2x+3)-(-4(x-1))=0
We multiply parentheses
2x^2-3x-4x-(-4(x-1))-6=0
We calculate terms in parentheses: -(-4(x-1)), so:
-4(x-1)
We multiply parentheses
-4x+4
Back to the equation:
-(-4x+4)
We add all the numbers together, and all the variables
2x^2-7x-(-4x+4)-6=0
We get rid of parentheses
2x^2-7x+4x-4-6=0
We add all the numbers together, and all the variables
2x^2-3x-10=0
a = 2; b = -3; c = -10;
Δ = b2-4ac
Δ = -32-4·2·(-10)
Δ = 89
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{89}}{2*2}=\frac{3-\sqrt{89}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{89}}{2*2}=\frac{3+\sqrt{89}}{4} $

See similar equations:

| x=132/11 | | X+18=15x-24 | | 8x÷2=16 | | 5x•4=80 | | 10y=2y+3+7 | | 98+2=k | | -280=-8(6v-1) | | 6x-4=4x-28 | | 5x×4=80 | | 2x3+3x2-8x-12=0 | | (19-6)x(14+6)=+5 | | x/2=169 | | 3x-12+9x=28 | | 3(5x-9)=33 | | 2(31-3x)=3x-19 | | z=9+42 | | 3x+10+x-4=4x+14 | | y/6-7=6 | | 137-9x=119-7x | | c=9(5)-8 | | x-4+3x+10=4x+14 | | (x-4)+3x+10=4x+14 | | 3x=2x=30 | | -9=1-4p-6 | | (W+10)(w)=131.25 | | -19.38-11,7k=0.9k-9.7k+16 | | 20n+40=300 | | 5y+1=4y-3= | | p+19=-11 | | 6(9-2x)=42 | | .04xxx2.5=650 | | 30x^2-16x+6=0 |

Equations solver categories