x(21+x)=(x+1)(22+14)

Simple and best practice solution for x(21+x)=(x+1)(22+14) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(21+x)=(x+1)(22+14) equation:



x(21+x)=(x+1)(22+14)
We move all terms to the left:
x(21+x)-((x+1)(22+14))=0
We add all the numbers together, and all the variables
x(x+21)-((x+1)36)=0
We multiply parentheses
x^2+21x-((x+1)36)=0
We calculate terms in parentheses: -((x+1)36), so:
(x+1)36
We multiply parentheses
36x+36
Back to the equation:
-(36x+36)
We get rid of parentheses
x^2+21x-36x-36=0
We add all the numbers together, and all the variables
x^2-15x-36=0
a = 1; b = -15; c = -36;
Δ = b2-4ac
Δ = -152-4·1·(-36)
Δ = 369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{369}=\sqrt{9*41}=\sqrt{9}*\sqrt{41}=3\sqrt{41}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-3\sqrt{41}}{2*1}=\frac{15-3\sqrt{41}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+3\sqrt{41}}{2*1}=\frac{15+3\sqrt{41}}{2} $

See similar equations:

| x79+928/9=8/78+97/39823=9822534535234/2352353425324532453245 | | 8.6x-11=4.4x+54 | | 9x+40=139 | | x79+928/9=8/78+97/39823 | | (7x+6)+(4x+11)=12x+5 | | (7x+6)+(4x+11)=(12x+5) | | 5x-4=1.5x=1.1 | | 2(x-4)=-3x=27 | | 4x+33+7x+9=360 | | (7x+6)+(4x+11)+(12x+5)=180 | | 3+21y=180 | | X=7.3(.65x) | | 8.09x+25=65.4481+5x | | X=6.8(.99x) | | 2a-a+3a=24 | | 5x+3=8.5x=1.1 | | 6v-3v=6 | | 5x-2+3=2x-2+3x | | y4+13y´´+36y=0 | | 60+60+5z=180 | | 3x-0.5=8.5x=3 | | 11(x+1)=7x-13 | | -13=v/5-8 | | x/2-5=x/9+x/3 | | 11-x=75-(-1x | | 60+90+x=189 | | v/4-11=8 | | z-1/3=5/3 | | 29+33+b=180 | | (3y-5)+((5y+20)=135 | | 50x25=5x | | 1y=8=17 |

Equations solver categories