x(2)-40=-5

Simple and best practice solution for x(2)-40=-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(2)-40=-5 equation:



x(2)-40=-5
We move all terms to the left:
x(2)-40-(-5)=0
We add all the numbers together, and all the variables
x^2-35=0
a = 1; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·1·(-35)
Δ = 140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{140}=\sqrt{4*35}=\sqrt{4}*\sqrt{35}=2\sqrt{35}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{35}}{2*1}=\frac{0-2\sqrt{35}}{2} =-\frac{2\sqrt{35}}{2} =-\sqrt{35} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{35}}{2*1}=\frac{0+2\sqrt{35}}{2} =\frac{2\sqrt{35}}{2} =\sqrt{35} $

See similar equations:

| t÷6-4=12 | | 8x+8-7x=16 | | 23=3-4u | | x^2+9/16x-100=0 | | 6x²+20x+6=0 | | 5x-4=114 | | 5+4x+5+x=-10 | | 2t^2-15t+18=0 | | 0=-4x^2+6x | | 7x-248=88 | | 3(x-6)+6=-18 | | F(x)=(x3-7)(2x2+3) | | 0=-4x+6x | | 6x-4=4(-2x+27) | | 6p+7p-3p-4p=72 | | -y-y+8=12 | | F(x)=10x2+9x-4 | | a÷3+3=12 | | 2y+8-y=-12 | | a^-6a-40=0 | | 2x+2x+8=-16 | | (3x+2)+7=21 | | 3x-2=5x+8/3= | | x-(2x-8)=0 | | F(x)=2x+18/9x^2+6x-3 | | 3x-2=5x=8/3= | | x-(2x-8=0 | | 240+.25x=180×.40x | | 6.1a+12=60.8 | | 6(2x-6)-3x=-7(-2x+4) | | 2x+3x+15=25 | | 4bb2+8+7=0 |

Equations solver categories