If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(14x+12x+100x)/1000=1000000
We move all terms to the left:
x(14x+12x+100x)/1000-(1000000)=0
We add all the numbers together, and all the variables
x(+126x)/1000-1000000=0
We multiply all the terms by the denominator
x(+126x)-1000000*1000=0
We add all the numbers together, and all the variables
x(+126x)-1000000000=0
We multiply parentheses
126x^2-1000000000=0
a = 126; b = 0; c = -1000000000;
Δ = b2-4ac
Δ = 02-4·126·(-1000000000)
Δ = 504000000000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{504000000000}=\sqrt{14400000000*35}=\sqrt{14400000000}*\sqrt{35}=120000\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-120000\sqrt{35}}{2*126}=\frac{0-120000\sqrt{35}}{252} =-\frac{120000\sqrt{35}}{252} =-\frac{10000\sqrt{35}}{21} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+120000\sqrt{35}}{2*126}=\frac{0+120000\sqrt{35}}{252} =\frac{120000\sqrt{35}}{252} =\frac{10000\sqrt{35}}{21} $
| 2x^2+x−11=6x−8 | | W(w+16)-260=0 | | 1.5z=75 | | 2x2+x−11=6x−8 | | x(14x+12x+100x)/1000=x | | 11x+20=12x+9 | | Y=4×+5y=3×+3 | | p/28=0.6 | | -v/8=57 | | 12+x4=-6-x2 | | 6b−4=20 | | 0=3.14•r^2•6-42 | | 3m=17m | | 10+4x=30-4 | | 8j=9+5j | | 2a-5=25/a | | 25.2=3.6t | | 5j+4=9 | | m-4.8=12.3 | | 2j+4=9 | | 46=5x+2(3x-21) | | 12=67x | | 1/2y+2=180 | | 5x+2x+5+3=22 | | 256=p+98 | | 50+35+x=180 | | 1/2y+2=7 | | 3s-4=8⁹ | | 5v^2-19v+4=0 | | 3(x)+3(1.5x)=7.75 | | -1/2(8x+10)=-3/4(16x-12) | | 5x+8x=4 |