If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-16x-22=0
a = 1; b = -16; c = -22;
Δ = b2-4ac
Δ = -162-4·1·(-22)
Δ = 344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{344}=\sqrt{4*86}=\sqrt{4}*\sqrt{86}=2\sqrt{86}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{86}}{2*1}=\frac{16-2\sqrt{86}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{86}}{2*1}=\frac{16+2\sqrt{86}}{2} $
| 2x+1.5=10 | | 7w+4=25 | | 5.8k+6.45=8.8k+5.3k | | -5z-9=19z+15 | | 5.8k-6.45=5.3k+8.8 | | 1.2+d+0.44=9.7 | | 4(3+2x)=28-4(x-5) | | 3=-3(2n+7) | | x(3+4)=26 | | -20y+32-y=-3y+9 | | 3/7x-1/4x=1 | | 3+1/2(5a+2)=14 | | 5,5x-10=4,5x+8 | | (3x^2+2x-1)^4=0 | | 4-(7-2x)=x+(x-3) | | -6n+15=-11n+5 | | ×+3y=20y= | | 5p-6=-26 | | -5(x+3)=-5x+15 | | 18x+4x(2x-4)=2(4x2-x)+20x | | 3(x-7)=-2+3x | | 12−10t=18t−16 | | 5(4x+7)=-19 | | 4f=3f-17 | | x+18=87 | | 10-x=8+2x | | 4x-9x+7=x-5+12 | | -3x-6x-9x=-12x | | 9=4q-3 | | 1.92=1.6m. | | k(-5)+7=0 | | 22x+70=17-95x |