If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying x2 + 60x + -200 = 0 Reorder the terms: -200 + 60x + x2 = 0 Solving -200 + 60x + x2 = 0 Solving for variable 'x'. Begin completing the square. Move the constant term to the right: Add '200' to each side of the equation. -200 + 60x + 200 + x2 = 0 + 200 Reorder the terms: -200 + 200 + 60x + x2 = 0 + 200 Combine like terms: -200 + 200 = 0 0 + 60x + x2 = 0 + 200 60x + x2 = 0 + 200 Combine like terms: 0 + 200 = 200 60x + x2 = 200 The x term is 60x. Take half its coefficient (30). Square it (900) and add it to both sides. Add '900' to each side of the equation. 60x + 900 + x2 = 200 + 900 Reorder the terms: 900 + 60x + x2 = 200 + 900 Combine like terms: 200 + 900 = 1100 900 + 60x + x2 = 1100 Factor a perfect square on the left side: (x + 30)(x + 30) = 1100 Calculate the square root of the right side: 33.166247904 Break this problem into two subproblems by setting (x + 30) equal to 33.166247904 and -33.166247904.Subproblem 1
x + 30 = 33.166247904 Simplifying x + 30 = 33.166247904 Reorder the terms: 30 + x = 33.166247904 Solving 30 + x = 33.166247904 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-30' to each side of the equation. 30 + -30 + x = 33.166247904 + -30 Combine like terms: 30 + -30 = 0 0 + x = 33.166247904 + -30 x = 33.166247904 + -30 Combine like terms: 33.166247904 + -30 = 3.166247904 x = 3.166247904 Simplifying x = 3.166247904Subproblem 2
x + 30 = -33.166247904 Simplifying x + 30 = -33.166247904 Reorder the terms: 30 + x = -33.166247904 Solving 30 + x = -33.166247904 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-30' to each side of the equation. 30 + -30 + x = -33.166247904 + -30 Combine like terms: 30 + -30 = 0 0 + x = -33.166247904 + -30 x = -33.166247904 + -30 Combine like terms: -33.166247904 + -30 = -63.166247904 x = -63.166247904 Simplifying x = -63.166247904Solution
The solution to the problem is based on the solutions from the subproblems. x = {3.166247904, -63.166247904}
| 0.10(x-5)=2.4 | | -7x-3(4y+7)=-49 | | 224=-v+23 | | 8v-5v-2v+2v=6 | | 3486-433= | | 7m-6=33 | | 0.55x+0.45(4-x)=0.3(-1) | | -20t-t+19t=-14 | | 3n+6=11 | | 2(y-42)=66 | | -12b+17b+10b-17b+12b=-20 | | 6-2/5x=-10 | | 6-0.5x=22 | | 7x-(4+3x)=5-3(x-2) | | 4(2-2x)=-8x+8 | | 3x-x^2=10 | | 60=5j-7j | | 7/11=x/3 | | 0.5x^3+3.5x^2-4x-8=0 | | -3(3s-4)-12=-3(5s+6)-4 | | x-(-2-4)+34-2*4=x | | 12/7=7/t | | 3y=5x-7 | | 2x+3=-4x+5 | | 3.5=-log(x) | | 5/k=12/7 | | 19-(x-4)+34+32=x | | 8x-5(6-x)=74 | | cot(x)=33 | | 19-2=x | | 2(2x-9)=3x-8 | | 7/n=6/7 |