If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x=720
We move all terms to the left:
x^2+4x-(720)=0
a = 1; b = 4; c = -720;
Δ = b2-4ac
Δ = 42-4·1·(-720)
Δ = 2896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2896}=\sqrt{16*181}=\sqrt{16}*\sqrt{181}=4\sqrt{181}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{181}}{2*1}=\frac{-4-4\sqrt{181}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{181}}{2*1}=\frac{-4+4\sqrt{181}}{2} $
| 1.8y-2=0.6y+4 | | 3(2x=1)=4+10 | | 8x^2-3+4x=0 | | (3k-2)=2(k=2 | | 0=-1/x^2+4 | | 6x−5=0 | | (X-6)+3/x=2/3 | | 4m+3+m-7=3(6m+1)-(7-m) | | x²+6x=0 | | x²-3x=0 | | X^2-(5/3)x+(25/36)=0 | | 3x²=300 | | 3x²-4=2 | | x=12x+.09(20,000-x) | | x=10x=-5 | | y/6+y/4=7/3 | | 4(n)=n-1 | | x=2x=9 | | x=8x=18 | | 9=√(9x+9) | | (14+20)x(14+20)=(14+20)x(14+20) | | 42/360=x/168 | | A(n)=22+(n-1)12 | | A(n)=22+(n-1)2 | | y=2.3+4 | | 42/360=168/x | | t^2+22t-4=0 | | 4/9x=-4/3 | | 8m(m+2)=2m-5 | | 11(t-2)+3t=7(2t+2)-12 | | 16n+4=4n+5 | | 2-x=5x+x |