If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+40x-270=0
a = 1; b = 40; c = -270;
Δ = b2-4ac
Δ = 402-4·1·(-270)
Δ = 2680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2680}=\sqrt{4*670}=\sqrt{4}*\sqrt{670}=2\sqrt{670}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-2\sqrt{670}}{2*1}=\frac{-40-2\sqrt{670}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+2\sqrt{670}}{2*1}=\frac{-40+2\sqrt{670}}{2} $
| -u+168=245 | | 132=221-v | | (x+2)+(3x-10)+(4x-4)=180 | | 121-y=202 | | v-1.51=9.5 | | 5/12d+2/6d+1/3d+1/12d=6 | | 2.7x=-1,2 | | 5=5+p/19 | | 54+9y=15y | | 1/2k=3/4k-1/3 | | A=21+c | | 3-2b=9 | | u+5.8=9.72 | | 4l+12/3=l+7 | | 10(2x+3)=5x+75 | | 6x+10x+2x=90 | | 8=2-5c | | (2*10x)+(2*6x)=160 | | 4r+2=6-2r | | -11n=5 | | 2x+3=5=2x | | 2(x-4)=50 | | 4h+2=h-1 | | 2=t4−1 | | 24x-2=40+3x | | 2=t4− 1 | | 6(x=7)=126 | | 1=3/x-4 | | 25+17x=45-3x | | 15m-2m=11-3m | | 7z-5=5z+3-2z | | 9x-24=-12x+1 |