If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+30x=3000
We move all terms to the left:
x^2+30x-(3000)=0
a = 1; b = 30; c = -3000;
Δ = b2-4ac
Δ = 302-4·1·(-3000)
Δ = 12900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12900}=\sqrt{100*129}=\sqrt{100}*\sqrt{129}=10\sqrt{129}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-10\sqrt{129}}{2*1}=\frac{-30-10\sqrt{129}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+10\sqrt{129}}{2*1}=\frac{-30+10\sqrt{129}}{2} $
| y=3/5(2)+1 | | x^2+30x=1 | | 3(1/3+c)=21/2 | | 8/3x+4=10 | | 0=-3t^2+6t-1 | | 56=x+18 | | 43-x=26 | | 60.3=9x | | 12y+20=5y+41 | | (7x^2-5x+1)-(-6x^2-3x+2)=0 | | 27=5+x | | 5=-2+x^2 | | 104=-2(5x+4)-4x | | 3=-2/11x+9 | | 10+g/4-3=12 | | f9+ -37= -33 | | -50=-9j+-5 | | x+11=37+4x | | 7+16x+1-4x=24+8x-9+3x | | 3×15x-3=90 | | 2x+17-7x-6=8-10x-19+5x | | (x^2+5x+3)-(-2x^2-3x-5)=0 | | 12x+8=10 | | 2x-5(x-2)=-7+3x-7 | | 7a+10=6a+4 | | (6x^2-2x+5)-(3x^2+3x+4)=0 | | (-5x+1)-(3x+1)=0 | | 2v2+8v=–7 | | 9x+3x-5x=10 | | (7x-6)-(-x+5)=0 | | y=100(1+0.04)^12 | | 6q−-8=26 |